The Fourier structure of low degree polynomials
نویسنده
چکیده
We study the structure of the Fourier coefficients of low degree multivariate polynomials over finite fields. We consider three properties: (i) the number of nonzero Fourier coefficients; (ii) the sum of the absolute value of the Fourier coefficients; and (iii) the size of the linear subspace spanned by the nonzero Fourier coefficients. For quadratic polynomials, tight relations are known between all three quantities. In this work, we extend this relation to higher degree polynomials. Specifically, for degree d polynomials, we show that the three quantities are equivalent up to factors exponential in d.
منابع مشابه
Nonclassical Polynomials as a Barrier to Polynomial Lower Bounds
The problem of constructing explicit functions which cannot be approximated by low degree polynomials has been extensively studied in computational complexity, motivated by applications in circuit lower bounds, pseudo-randomness, constructions of Ramsey graphs and locally decodable codes. Still, most of the known lower bounds become trivial for polynomials of superlogarithmic degree. Here, we s...
متن کاملOn Higher-Order Fourier Analysis over Non-Prime Fields
The celebrated Weil bound for character sums says that for any low-degree polynomial P and any additive character χ, either χ(P ) is a constant function or it is distributed close to uniform. The goal of higher-order Fourier analysis is to understand the connection between the algebraic and analytic properties of polynomials (and functions, generally) at a more detailed level. For instance, wha...
متن کاملTrajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملComputing Zernike polynomials of arbitrary degree using the discrete Fourier transform
The conventional representation of Zernike polynomials Rn (ρ) gives unacceptable numerical results for large values of the degree n. We present an algorithm for the computation of Zernike polynomials of arbitrary degree n. The algorithm has the form of a discrete Fourier (cosine) transform which comes with advantages over other methods in terms of computation time, accuracy and ease of implemen...
متن کاملDiscrete Fourier Analysis and Chebyshev Polynomials with G2 Group
Abstract. The discrete Fourier analysis on the 300–600–900 triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm–Liouville eigenvalue problem that contains two parameters, whose solutions are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 23 شماره
صفحات -
تاریخ انتشار 2016